kvadrat-yuva üsulu 2021

kvadrat-yuva üsulu
kvadrat-yuva
kvadratik 2021
OBASTAN VİKİ
Yuva
Yuva — canlılar tərəfindən qurulan və yuxu, yaşayış və bala çıxartmaq üçün nəzərdə tutulan tikili. Canlıların bioloji növündın , yaşayış yerindən və istifadə edilən materialdan asılı olaraq bir-birindən fərqlənə bilər. Yuvalar ağaclarda, çardaq altında və torpaq altında qurula bilər.
Kvadrat
Kvadrat (ing. quad — dörd) — düzgün dördbucaqlı == Diaqonalları == Diaqonalları bir-birinə bərabərdir, hər birinin uzunluğu kvadratın tərəfinin √2 mislinə bərabərdir; Diaqonalları düz bucaq altında kəsişir və kəsişmə nöqtəsində yarıya bölünür; Diaqonallar həm də tənböləndir; Diaqonalların hər biri ayrılıqda kvadratı sahələri bərabər olan 2 düzbucaqlı üçbucağa ayırır; Kvadratın hər bir diaqonalı xaricə çəkilmiş çevrənin diametridir (həmin çevrənin radiusundan 2 dəfə uzundur); == Xassələri == Kvadrat — bütün tərəfləri və bütün bucaqları bərabər olan paraleloqramdır. Daxili bucaqlarının cəmi 360°-dir (4•90°=360°). Tutaq ki, kvadratın tərəfi t {\displaystyle t} , xaricinə çəkilmiş çevrənin radiusu R {\displaystyle R} , daxilinə çəkilmiş çevrənin radiusu isə r {\displaystyle r} -dir. Kvadratın xaricində bucaqlarının cəmi 360 dərəcədir. Daxilə çəkilmiş çevrənin radiusu: r = t 2 {\displaystyle r={\frac {t}{2}}} , Xaricə çəkilmiş çevrənin radiusu: R = 2 2 t {\displaystyle R={\frac {\sqrt {2}}{2}}t} , Kvardratın perimetri:P=4a P = 4 t = 4 2 R = 8 r {\displaystyle P=4t=4{\sqrt {2}}R=8r} , Sahəsi: S=a×a=a2 S = t 2 = 2 R 2 = 4 r 2 {\displaystyle S=t^{2}=2R^{2}=4r^{2}} .
Yuva (Qəmərli)
Yuva — İrəvan xanlığının Qarnibasar mahalında kənd adı. İrəvan quberniayasının İrəvan qəzasında, indi Qəmərli (Artaşat) rayonunda kənd. XX əsrin əvvəllərinə aid mənbədə İrəvan qəzasında çəkilir. 1728-ci ildən mə’lumdur. Rayon mərkəzindən 3 km məsafədə, Gərni və Vedi çaylarından axan arxın yanında yerləşir. "İrəvan əyalətinin icmal dəftəri"ndə, Qafqazın 5 verstlik xəritəsində qeyd edilmişdir.1950-ci ildə kənd Şaumyan adlandırılmışdır. Səlcuq Oğuzlarının Yivə (Ivə) tayfasının adını əks etdirir. Azərbaycanda Evoğlu (Ağdam rayonu) (yə’ni "Yivə oğlu") kənd adı ilə mənşəcə eynidir. 1588-ci ilə aid mənbədə şimali Azərbaycanda Zəyəm nahiyəsində Yuvalı-Fəxralı (Temur Hasan da adlanırdı) elinin yaşadığı qeyd olunmuşdur Toponim ivə//yıva oğuz tayfasının adı əsasında əmələ gəlmışdir. Etnotoponimdir.
Yuva (dəqiqləşdirmə)
Yuva — canlılar tərəfindən qurulan və yuxu, yaşayış və bala çıxartmaq üçün nəzərdə tutulan tikili. Yuva (jurnal) — aylıq ailə-uşaq jurnalı. Yuva (Qəmərli) — İrəvan quberniayasının İrəvan qəzasında, indi Qəmərli (Artaşat) rayonunda kənd. Yuva (film) — rejissor Emin Əfəndiyevin eyniadlı filmi.
Kvadrat (cəbr)
Kvadrat ədəd - ədədin özü-özünə vurulmasından alınan hasil. Kvadrat dərəcəsi 2 olan qüvvət şəklində göstərilir. Kvadrat sırası: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849... Tarixən bu ardıcıllıqlar həqiqi ədədlərin "kvadratı" adlandırılır. == Göstərilmə üsulları == n {\displaystyle n} həqiqi ədədinin kvadratını n-ə qədər olan ilk tək ədədlərin cəmi şəklində göstərmək olar: 1: 1 = 1 {\displaystyle 1=1} 2: 4 = 1 + 3 {\displaystyle 4=1+3} … 7: 49 = 1 + 3 + 5 + 7 + 9 + 11 + 13 {\displaystyle 49=1+3+5+7+9+11+13} … Həqiqi ədədin kvadratının göstərilməsinin daha bir üsulu: n 2 = 1 + 1 + 2 + 2 + . . . + ( n − 1 ) + ( n − 1 ) + n {\displaystyle n^{2}=1+1+2+2+...+(n-1)+(n-1)+n} Nümunə: 1: 1 = 1 {\displaystyle 1=1} 2: 4 = 1 + 1 + 2 {\displaystyle 4=1+1+2} … 4: 16 = 1 + 1 + 2 + 2 + 3 + 3 + 4 {\displaystyle 16=1+1+2+2+3+3+4} … == Kompleks ədədin kvadratı == Cəbri formada olan kompleks ədədin kvadratını aşağıdakı düstur ilə hesablamaq olar: ( a + b i ) 2 = ( a 2 − b 2 ) + 2 a b i . {\displaystyle \left(a+bi\right)^{2}=\left(a^{2}-b^{2}\right)+2abi.} Triqonometrik formada kompleks ədəd üçün analoji düstur: r ( cos ⁡ ϕ + i sin ⁡ ϕ ) 2 = r 2 ( cos ⁡ 2 ϕ + i sin ⁡ 2 ϕ ) .
Kvadrat (dəqiqləşdirmə)
== Elm == Kvadrat — bütün tərəfləri bərabər olan düzbucaqlı Kvadrat (cəbr) — ədədin özü-özünə vurulmasından alınan hasil. == Film == Kvadrat (film, 2017) — rejissor Ruben Estlundun 2017-ci ildə çəkdiyi film. == Həmçinin bax == Kvadrat kökləri — a {\displaystyle \!a} (2-ci dərəcəli kök) — x ⋅ x = a {\displaystyle x\cdot x=a} tipli bərabərliyin həlli. Ədədin kvadratı — ədədi özünə vurduqda alınan hasil onun kvadratı adlanır.
Kvadrat kilometr
Kvadrat kilometr (qısaca km²) — sahə ölçü vahidi.
Kvadrat köklər
Kvadrat kökləri a {\displaystyle \!a} (2-ci dərəcəli kök) — x ⋅ x = a {\displaystyle x\cdot x=a} tipli bərabərliyin həlli. Bir çox hallarda x {\displaystyle \!x} və a {\displaystyle \!a} kimi rəqəmlər başa düşülür. Bəzən riyazi obyektlər, məsələn, matrisa və operatorlar kimi də ola bilərlər.
Kvadrat metr
Kvadrat metr (m²) — üzrə sahənin ölçü vahidi. 1 m² bir tərəfi 1 metrə bərabər olan kvadratın sahəsinə bərabərdir.
Kvadrat qarpız
Kvadrat qarpız (ing. Square watermelon) — kub formasında xüsusi şəraitdə yetişidirilmiş qarpız çeşidi. Kvadrat qarpızlar əsasən Yaponiyada yetişdirilməkdədir və bir ədədi 100 ABŞ dolları dəyərində qiymətləndirilir. == Məqsəd və istifadəsi == Kvadrat qarpızların ilk dəfə Yaponiyada istehsal olunmuşdur. Belə qarpızları ilk dəfə 1978-ci ildə Kaqava prefekturasının Zentsuci şəhərinin Fudeoka rayonunun fermerləri onların soyuducuya rahat yerləşməsi üçün istehsal ediblər. Sonradan Yaponiyanın qərbində yerləşən Kanaqava prefekturasını fermerləri dördbucaq qarpızların ölkə bazarlarına göndərilməsinə başlayıblar. XXI əsrdən etibarən məşhurluq qazanan qarpızların Amerika Birləşmiş Ştatlarında da istehsal olunmasına başlanılıb. Qarpızların bu formada yetişdirilməsi üçün xüsusi hazırlanmış istixanalardan istifadə olunur. Kvadrat qutuların içərisində yetişidirlən qarpızlara daimi nəzarət və qulluq tələb olunur. 2001-ci ilin məlumatlarına görə bu tip qarpızlar ədədi 83 ABŞ dollarına bərabər olduğundan əsasən zəngin və dəbdəbəli istehlakçılara xitab etmək üçün hazırlanmışdır.
Kvadrat tənlik
Kvadrat tənlik — a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} , ( a ≠ 0 {\displaystyle a\neq 0} ) şəklində olan tənliyə deyilir. Burada a, b, c sabit ədədlər, x isə məchuldur. a - birinci əmsal, b - ikinci əmsal, c - sərbəst hədd adlanır. Birinci həddin əmsalı (yəni a) 1-ə bərabər olan kvadrat tənlik Çevrilmiş kvadrat tənlik adlanır. Məsələn: ax²+bx+c=0 tənliyinin hər iki tərəfini a-ya bölməklə, x²+ b/a x +c/a=0 tənliyini alarıq. Burada b/a=p, c/a=q işarə etməklə, onu x²+px+q=0 şəklində yazmaq olar x²+px+q=0 𝐭ə𝐧𝐥𝐢𝐲𝐢𝐧ə ç𝐞𝐯𝐫𝐢𝐥𝐦𝐢ş 𝐤𝐯𝐚𝐝𝐫𝐚𝐭 𝐭ə𝐧𝐥𝐢𝐤 𝐝𝐞𝐲𝐢𝐥𝐢𝐫. 2x²-6x-8=0 tənliyinin hər iki tərəfini 2-yə bölməklə, onunla eynigüclü olan x²-3x-4=0 çevrilmiş kvadrat tənliyi alarıq == Viyet teoremi == Çevrilmiş kvadrat tənlikdə tənliyin kökləri cəmi əks işarə ilə ikinci əmsala, kökləri hasili isə sərbəst həddə bərabərdir. Viyet teoreminin tərsi-Tərs Teorem:m və n ədədlərinin cəmi p-yə hasili isə q-ya bərabər olarsa, bu ədədlər x²+px+q=0 tənliyinin kökləridir. İsbat: Tənlikdə x=m yazsaq, m²-(m+n)×m+mn=m²-m²-mn+mn=0 olduğunu alarıq, yəni m ədədi tənliyi ödəyəndir. x=n ədədinin də tənliyin kökü olduğunu eyni qayda ilə göstərmək olar.
Sehrli kvadrat
Sehrli kvadrat – dünyada məşhur olan riyazi termin "Sehrli kvadrat"lar qədim dövrlərdən müxtəlif mədəniyyətlərə məlumdur. Həmin xalqlar bu kvadratların möcüzəli qüvvəyə malik olduğunu düşünürdülər. Avropada isə ilk belə kvadrat 1514-cü ildə Albrext Dürer tərəfindən yaradılıb. "Sehrli kvadrat"larda ədədləri diaqonal, şaquli və üfüqi istiqamətdə topladıqda cəm eyni alınır.
Yuva (film, 2020)
Yuva — Rejissor Şon Durkinin 2020-ci ildə çəkdiyi Amerika dram filmidir. Filmdə baş rolları Cud Lou və Kerri Kim ifa etmişdirlər. == Süjet xətti == Film ailəsi ilə bərabər Amerikadan vətəni Böyük Britaniyaya geri qayıdan və özündən daha varlı görünməyə çalışan Rori adlı istedadlı bir iş adamının həyatından bəhs edir.
Elektroerrozion üsulu
Elektroerrozion üsulu- mexaniki emala tamamlayıcı bir üsul olub elektrik keçirən hissələrin hazırlanmasında tətbiq olunur. Mürəkkəb metallik hissələrin hazırlanmasında bu üsulun yeri əvəz olunmazdır. Çünki, frezləmə üsulunun tətbiqi verilən hissənin həndəsəsindən asılıdır. Böyük dərinlikdə (> 200 mm) yerləşən mürəkkəb konturların effektiv frezlənməsi alətin uzunluğunun məhdud olmasına görə və ya da dəqiqlik baxımından mümkün deyildir. Belə səthlərin emalını elketroerrozion üsulu ilə aparmaq əlverişlidir. Bu üsulun ən çox tətbiq olunduğu sahə dəmir tərkibli metal formaların hazırlanmasıdır. Elektroerrozion üsulunda metalların emalının iki variantını göstərmək olar: elektrodla emal; məftillə emal. Bü iki kəsmə variantını birləşdirən onların eyni fiziki prinsipə malik olmasıdır. Elektroerrozion üsulu ilk dəfə olaraq rus alimləri Lazarenko B.R. və Zolotıx B.N. tərəfindən ixtira edilərək, onun elekrtotermiki nəzəriyyəsi işlənmişdir. Prosesin iş prinsipi emal olunan səthlərin elektrolit bir mühitdə erroziyasına, yəni aşınmasına əsaslanır.
Eyler üsulu
Ardıcıl yaxınlaşma üsulunda hər bir yaxınlaşmada müəyyən inteqrallar hesablanır. Əksər hallarda müəyyən inteqralları dəqiq üsullarla hesablamaq mümkün olmur və təqribi üsullardan istifadə olunur. Tutaq ki, y ′ ( x ) = f ( x , y ) {\displaystyle y^{\prime }(x)=f(x,y)} diferensial tənliyinin y ( x 0 ) = y 0 {\displaystyle y(x_{0})=y_{0}} başlanğıc şərtini ödəyən həllini [ a , b ] {\displaystyle [a,b]} parçasında tapmaq tələb olunur [ a , b ] {\displaystyle [a,b]} parçasını h {\displaystyle h} addımı ilə n {\displaystyle n} bərabər hissəyə bölək: h = b − a n , x i = x 0 + i h , ( i = 0 , 1 , 2 , … ) {\displaystyle h={\frac {b-a}{n}},x_{i}=x_{0}+ih,(i=0,1,2,\ldots )} [ x k , x k + 1 ] {\displaystyle [x_{k},x_{k+1}]} parçasında tənliyini inteqrallayaq. ∫ x k x k + 1 y ′ ( x ) d x = ∫ x k x k + 1 f ( x , y ) d x {\displaystyle \int \limits _{x_{k}}^{x_{k+1}}y^{\prime }(x)\,dx=\int \limits _{x_{k}}^{x_{k+1}}f(x,y)\,dx} y ( x ) | x k x k + 1 = ∫ x k x k + 1 f ( x , y ) d x ⇒ y ( x k + 1 ) = y ( x k ) + ∫ x k x k + 1 f ( x , y ) d x {\displaystyle y(x)|_{x_{k}}^{x_{k+1}}=\int \limits _{x_{k}}^{x_{k+1}}f(x,y)\,dx\Rightarrow y(x_{k+1})=y(x_{k})+\int \limits _{x_{k}}^{x_{k+1}}f(x,y)\,dx} (1) [ x k , x k + 1 ] {\displaystyle [x_{k},x_{k+1}]} parçasında f ( x , y ) {\displaystyle f(x,y)} funksiyasının qiymətini sabit, ( x k , y k ) {\displaystyle (x_{k},y_{k})} nöqtəsindəki qiymətinə bərabər götürsək (1) aşağıdakı kimi yazılar: y ( x k + 1 ) = y ( x k ) + f ( x k , y k ) ( x k + 1 − x k ) = y ( x k ) + f ( x k , y k ) h {\displaystyle y(x_{k+1})=y(x_{k})+f(x_{k},y_{k})(x_{k+1}-x_{k})=y(x_{k})+f(x_{k},y_{k})h} (2) (2) ( x k , y k ) {\displaystyle (x_{k},y_{k})} nöqtəsində tənliyin y ( x ) {\displaystyle y(x)} həllinə çəkilmiş toxunanın tənliyidir. Sanki [ x k , x k + 1 ] {\displaystyle [x_{k},x_{k+1}]} parçasında tənliyin həlli abisisi x k {\displaystyle x_{k}} olan nöqtədə çəkilmiş toxunana paralel və ( x k , y k ) {\displaystyle (x_{k},y_{k})} nöqtəsindən keçən düz xətt parçası ilə əvəz olunur. Nəticədə həllə yaxın sınıq xətləri alırıq ki, bu sınıq xəttə Eyler sınıq xətti deyilir.
Keys üsulu
Keys üsulu və ya Keys metodu (ing. Case method; case-study) == Hadisənin öyrənilməsi == Hadisənin öyrənilməsi (case study) hadisəni yaradan səbəblərin, onun hərəkət verici amillərinin aşkara cıxarılması məqsədilə bu hadisənin bütün dərinliyi ilə tədqiq edilməsindən ibarətdir. === Hadisənin öyrənilməsi metodu === Hadisə öyrənilməsi metodundan təhsil, sosial psixologiya, sosiologiya, siyasət, iqtisadiyyat kimi sahələrdə istifadə edilir. Məsələn, sahibkar olmaq istəyən bir şəxsin, öz işini açarkən keçdiyi mərhələləri öyrənmək və analiz etmək bu sahədəki çatışmazlıqlar və hansı addımlar atılarsa onların aradan qaldırıla bıləcəyi haqqında qiymətli məlumatlar verə bilər. Psixologiya sahəsində son dövrlərə qədər hadisənin öyrənilməsindən ən çox istifadə olunan yer neyropsixologiya idi. Tədqiqiatçılar beynin müxtəlif sahələrinin zədələnməsinə məruz qalmış insanların davranışındakı dəyişiklikləri öyrənərək sinir sisteminin fəaliyyəti haqqında dəyərli məlumatlar əldə edə bilirlər. Gündəlik psixologiyada isə insan davranışının, onun səbəblərinin öyrənilməsi üçün uzun müddət ümumiyyətlə kəmiyyət tədqiqiatlarına üstünlük verilmişdir, həm də tədqiqatlar daha çox laboratoriya təcrübələri üzərində qurulmuşdur. Lakin son illər təbii şəraitdə aparılan və ümumi şəkildə çöl tədqiqatları adlanan üsullara diqqət yetirilməyə başlandı. Bir çox tədqiqatçılar psixologiyanın gələcəyinin məhz təbii şəraitdə aparılan tədqiqatlar üzərində qurulacağını ehtimal edirlər. === Hadisə öyrənilməsi metodunun tipləri === Tədqiqat metodlarına aid ədəbiyyatda hadisənin öyrənilməsi üsulunun bir neçə tipi göstərilir.
Kramer üsulu
Kramer üsulu — xətti cəbrdə xətti tənliklər sisteminin həlli üsuludur. Bu üsul 2021-ci ildə onu dərc etmiş Qabriel Kramerin adına adlandırılıb. Lakin Kolin Maklaurin də həmçinin bu üsulu 1748-ci ildə dərc etmişdi (və ehtimalən 1729-cu ildə bu üsul barədə bilirdi). == Təsviri == Tutaq ki, kvadrat xətti tənliklər sistemi (<yəni n {\displaystyle n} məchullu n {\displaystyle n} tənlik) verilmişdir { u j a 11 x 1 + a 12 x 2 + … + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + … + a 2 n x n = b 2 … … … … … a m 1 x 1 + a m 2 x 2 + … + a m n x n = b m , ( 1 ) {\displaystyle {\begin{cases}uja_{11}x_{1}&+a_{12}x_{2}&+\dots &+a_{1n}x_{n}&=b_{1}\\a_{21}x_{1}&+a_{22}x_{2}&+\dots &+a_{2n}x_{n}&=b_{2}\\\dots &\dots &\dots &\dots &\dots \\a_{m1}x_{1}&+a_{m2}x_{2}&+\dots &+a_{mn}x_{n}&=b_{m}\end{cases}},(1)} və əsas matrisin determinantı sıfırdan fərqlidir. Δ = | a 11 a 12 … a 1 n a 21 a 22 … a 2 n … … … a n 1 a n 2 … a n n | ≠ 0 , ( 2 ) {\displaystyle \Delta ={\begin{vmatrix}a_{11}&a_{12}\dots &a_{1n}\\a_{21}&a_{22}\dots &a_{2n}\\&\dots &\dots &\dots \\a_{n1}&a_{n2}\dots &a_{nn}\\\end{vmatrix}}\neq 0,(2)} Tutaq ki, x 1 , x 1 , . . . , x n {\displaystyle x_{1},x_{1},...,x_{n}} (1) sisteminin hər hansı bir həllidir. Onda (1) bərabərliklərini uyğun olaraq əsas matrisin Δ {\displaystyle \Delta } determinantının hər hansı j {\displaystyle j} sütunun ( j = 1 , n → {\displaystyle j={\overrightarrow {1,n}}} ) elementlərinin A 1 j , x 1 j , . .
Kütuclular üsulu
“kütuclular" üsulu – ədədin yaddaşda saxlanma üsulu; bu halda ən qiymətli bayt ədədin birinci baytı olur. Məsələn, onaltılıq A02B ədədi yaddaşda “kütuclular” üsulu ilə A02B şəklində, “sivriuclular” üsulu ilə isə 2BA0 şəklində saxlanılır. Birinci üsuldan Motorola şirkətinin, ikincidən isə Intel şirkətinin mikroprosessorlarında istifadə olunur. Bu termin öz mənşəyini Conatan Svift’in “Qulliverin səyahəti” əsərindən alır: imperatorun əmrinə görə yumurtanı yalnız sivri icundan sındırıb yemək olar. Bu əmrə tabe olmaqdan imtina edən bir qrup adamı “kütuclular” adlandırırdılar. == Ədəbiyyat == İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
Makrometeorologiya üsulu
Makrometeorologiya üsulu vasitəsilə atmosferin ümumi sirkulyasiyasının xarakterinin uzunmüddətli dəyişməsinin və bununla əlaqədar olaraq müxtəlif coğrafi rayonlarda havanın proqnozunu hazırlamaq mümkündür. Sinoptik meteorologiyada olduğu kimi, makrometeorologiyada da bir çox hallarda sinoptik üsuldan istifadə edilir. Makrometeorologiya üsulunu sinoptik üsuldan fərqləndirən bir sıra xüsusiyyətlər mövcuddur. Bunlara öyrənilən proseslərin zaman və məkana görə müxtəlif miqyasda dəyişməsini aid etmək olar. Məsələn, qısamüddətli proqnoz ucun ilkin yanaşmada baxılan nisbətən böyük olmayan rayonun cari və bir-iki gün əvvəlki sinoptik və yüksəklik xəritələrinin təhlili ilə kifayətlənmək olursa, uzunmüddətli proqnozlar ucun bunlar azdır. Burada bir necə günü, həftəni, hətta bir necə ayı əhatə edən proseslərin təhlili lazımdır.
Müqayisə üsulu
Nyuton üsulu
Nyuton üsulu (həmçinin Nyuton-Rafson üsulu) — riyazi analizdə İsaak Nyuton və Cozef Rafsonun adına adlandırılmış, real dəyərə malik funksiyaların köklərinin ardıcıl olaraq daha yaxşı həllini tapmaq üsulu. Bu, kökün tapılması alqoritmlərindən biridir. Nyuton üsulunun bir dəyişənlə tətbiqi aşağıdakı kimidir: Bu üsul x dəyişəni olan f funksiyası, həmin funksiyanın f ′ törəməsi və f funksiyasının kökü kimi ilkin x0 fərziyyəsi ilə başlayır. Əgər bu funksiya formulanın törəməsindəki fərziyyələri qane edirsə və ilkin fərz edilən həll yaxındırsa, o zaman x1 daha yaxşı təxmini həll tapmaq üçün x 1 = x 0 − f ( x 0 ) f ′ ( x 0 ) . {\displaystyle x_{1}=x_{0}-{\frac {f(x_{0})}{f'(x_{0})}}\,.} istifadə edilir. Həndəsi olaraq, (x1, 0), (x0, f (x0))-də f funksiyasının x oxu ilə kəsişməsidir Bu proses daha dəqiq həll tapılana kimi aşağıdakı kimi davam etdirilir: x n + 1 = x n − f ( x n ) f ′ ( x n ) {\displaystyle x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}}\,} İkinci tərtib törəmənin köməyi ilə minimumun axtarılması üsullarına iki tərtibli üsullar deyilir. Bu üsullarda funksiyanın Teylor sırasına ayrılışında kvadratik hissədən istifadə edilir. Nyuton üsulu da məhz ikinci tərtib üsullara, yəni minimallaşdırılan funksiyanın ikinci tərtib törəmələrindən istifadə edilən üsullara aiddir. Bu üsulda da məqsəd funksiyanın Teylor ayrılışının kvadratik hissəsindən istifadə etməkdir. Teylor ayrılışının kvadratik hissəsi funksiyanı bu ayrılışın xətti hissəsinə nisbətən daha dəqiq approksimasiya etdiyindən gözləmək olar ki, ikinci tərtib üsullar birinci tərtib üsullara nisbətən daha sürətlə yığılır.
Pomidor üsulu
Pomidor üsulu, 1990-ci illərin əvvəlində, Françesko Kirillo tərəfindən təklif olunan zamanın idarəolunması üsuludur. Bu üsul, tapşırığın, "pomidor" adlanan, qısa fasilərlə müşahidə olunan, 25 dəqiqəlik aralıqlara bolünməsini təklif edir. Hər intervalın və umümiyyətlə üsulun "pomidor" adlandırılması, Kirillonun tələbə olduğu vaxtlarda işlətdiyi pomidor formasında taymerin şərəfinə idi . Pomidor üsulü növbəti mərhələrdən ibarətdir: İcra edəcəyiniz tapşırığı müəyyən edin və alt tapşırıqlara bölün. Hər bir alt tapşırığa 25 dəqiqəlik ara (pomidor) ayrılır Taymeri 25 dəqiqəyə qoyun. Taymer zəng çalana qədər fikrinizi yayındırmadan işləyin. Fikrinizi yayındıran amilləri vərəqdə qeyd edin və işləməyə davam edin. Hər 25 dəqiqəlik ara sonlananda, pomidoru bitirdiyiniz haqqda qeyd aparın və qısa fasilə verin (3-5 dəqiqə), Hər 4-cü pomidordan sonra uzun fasilə verin (15-30 dəqiqə). Planlaşdırma, izləmə, qeyd etmə, emal etmə və görüntüləmə üsulun əsaslarını təşkil edir . Planlaşdırma mərhələsində tapşırıqlar, onları tapşırıq siyahısında qeyd etməklə prioritetləşdirilir.
Qauss üsulu
Qauss üsulu — Xətti tənliklər sistemini həll etmək üçün klassik üsul. Bəzən bu üsula əmsalları yoxetmə üsulu da adlanır. Tutaq ki, kvadrat xətti tənliklər sistemi verilmişdir { a 11 x 1 + a 12 x 2 + … + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + … + a 2 n x n = b 2 … … … … … a m 1 x 1 + a m 2 x 2 + … + a m n x n = b m , ( 1 ) {\displaystyle {\begin{cases}a_{11}x_{1}&+a_{12}x_{2}&+\dots &+a_{1n}x_{n}&=b_{1}\\a_{21}x_{1}&+a_{22}x_{2}&+\dots &+a_{2n}x_{n}&=b_{2}\\\dots &\dots &\dots &\dots &\dots \\a_{m1}x_{1}&+a_{m2}x_{2}&+\dots &+a_{mn}x_{n}&=b_{m}\end{cases}},(1)} Bu sistemin həlli üçün məchulun yox edilməsi və ya Qausus üsulunun mahiyyəti aşağıdakı kimidir. Tutaq ki, a 11 ≠ 0 {\displaystyle a_{11}\neq 0} . Onda sistemin birinci tənliyinin hər iki tərəfini a 21 a 11 {\displaystyle \ {\frac {a_{21}}{a_{11}}}} vuraraq alınan a 21 x 1 + a 12 a 21 a 11 x 2 + a 1 n a 21 a 11 x n = a 21 a 11 b 1 {\displaystyle a_{21}x_{1}+\ {\frac {a_{12}a_{21}}{a_{11}}}x_{2}+\ {\frac {a_{1n}a_{21}}{a_{11}}}x_{n}=\ {\frac {a_{21}}{a_{11}}}b_{1}} tənliyini sistemin ikinci tənliyindən tərəf-tərəfə çıxaq. Aldığımız tənlikdə x 1 {\displaystyle x_{1}} məchulu iştirak etmir. a 22 ′ x 2 + a 23 ′ x 3 + . . . + a 2 n ′ x n = b 2 ′ {\displaystyle a'_{22}x_{2}+a'_{23}x_{3}+...+a'_{2n}x_{n}=b'_{2}} Sonra sistemin birinci tənliyinin hər iki tərəfini a 21 a 11 {\displaystyle \ {\frac {a_{21}}{a_{11}}}} vuraraq alınan tənliyini sistemin üçüncü tənliyindən tərəf-tərəfə çıxaq.
Radiolokasiya üsulu
Radiolokasiya üsulu – atmosferdə yağıntıların və buludların, həmçinin təhlükəli atmosfer hadisələrinin yerlərinin, hərəkət istiqamətlərinin, intensivliyinin radiolokasiya üsulu ilə təyin edilməsinə əsaslanmışdır.
Test üsulu
Test üsulu ilk dəfə olaraq 1969-cu ildə ABŞ-də orta məktəb məzunlarının bilik səviyyəsinin monitorinq əsaslarla qiymətləndirilməsi məqsədilə tətbiq olunub. 1970-ci illərdə ABŞ-nin bu sahədəki təcrübəsindən Türkiyədə eksperiment kimi ali məktəbə tələbə qəbulu prosesinin təkmilləşdirilməsində istifadə edilib. Azərbaycanda Test üsulu ilk dəfə olaraq 1992-ci ildən ali məktəbə tələbə qəbulu prosesində sonradan isə orta ixtisas məktəblərinə qəbulda da tətbiq olunub. Buraxılış imtahanları təhsil pillələri üzrə (9 və 11-ci siniflər) testlər vasitəsilə mərkəzləşdirilmiş qaydada aparılır, nəticələri xüsusi prosedurlar və texniki vasitələr tətbiq edilməklə, Azərbaycan Respublikasının Təhsil Nazirliyində qiymətləndirilir, məzunlara şəhadətnamə və attestatların verilməsi təmin edilir. Azərbaycanda Test üsulunun tətbiqi ilk dəfə 1992-ci ilin May ayinin 28-də Azərbaycan Ana Torpaq Partiyasında bu təşəbbüs müzakire olunmuşdur. "AATP Azərbaycanda rüşvətsiz tələbə qəbulunu gerçəkləşdirmək üçün test üsulunun tətbiq olunmasını 28 may 1992-ci ildə müzakirə edərək bunu ən vacib problem sayaraq o zamankı parlament sədri İsa Yunisoğlu Qəmbər ilə məsləhətləşib təşəbbüs qaldıran ilk partiya olub." 1960-80-ci illerde 1992-ci ilədək ali və orta ixtisas məktəblərinə tələbə qəbulunun qanunsuz yollarla (hökumət təmsilçilərinin təzyiqilə, vəzifəli şəxslərin təsirilə və kütləvi rüşvətxorluqla) ədalətsiz keçirilməsi milli şüurumuzun inkişafına 20-ci esrdə ən çox ziyan vurmuş amillərdənir. Keçmiş Sovet İttifaqının ərazisində TEST ÜSULU ilə rüşvətsiz tələbə qəbulunun 1992-ci ildən indiyədək əsasən Azərbaycanda keçirilməsi yaxın gələcəkdə xalqımızın əsgi sovet cumhuriyyətlərindəki xalqlara nisətən rəqabət qabiliyyətinin daha da artacagına inam yaradır. Test Üsulunun 1992-ci ildən indiyədək 20 dəfə əsasən uğurlu Tətbiqi xalqımızın mədəni səviyyəsinin fəxr olunacaq bir göstəricisidir. 1992-ci ildə Müsavat başqanının sabiq I müavini, Müsavat Partiyasının üzvlərinlərindən biri Vurğun Əyyub Azərbaycan Tarixində Ən Böyük İslahatın ilk dəfə keçirilməsində fəal iştirak edib. 1992-93-cü illərdə Vurğun Əyyub TQDK-ya rəhbərlik edib.